
OpenHPC (v1.3.1)
Cluster Building Recipes

CentOS7.3 Base OS

Warewulf/SLURM Edition for Linux* (aarch64)

[ Tech Preview ]
Document Last Update: 2017-06-16

Document Revision: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

Legal Notice

Copyright © 2016-2017, OpenHPC, a Linux Foundation Collaborative Project. All rights reserved.

This documentation is licensed under the Creative Commons At-
tribution 4.0 International License. To view a copy of this license,
visit http://creativecommons.org/licenses/by/4.0.

Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

2 Rev: 22344a4

http://creativecommons.org/licenses/by/4.0


Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

Contents

1 Tech Preview 5

2 Introduction 5
2.1 Target Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Requirements/Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Install Base Operating System (BOS) 8

4 Install OpenHPC Components 8
4.1 Enable OpenHPC repository for local use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Installation template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Add provisioning services on master node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.4 Add resource management services on master node . . . . . . . . . . . . . . . . . . . . . . . . 10
4.5 Add InfiniBand support services on master node . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.6 Complete basic Warewulf setup for master node . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.7 Define compute image for provisioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.7.1 Build initial BOS image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.7.2 Add OpenHPC components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.7.3 Customize system configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.7.4 Additional Customization (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.7.4.1 Increase locked memory limits . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.7.4.2 Enable ssh control via resource manager . . . . . . . . . . . . . . . . . . . . . 14
4.7.4.3 Add Lustre client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.7.4.4 Add Nagios monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.7.4.5 Add Ganglia monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.7.4.6 Add ClusterShell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.7.4.7 Add mrsh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.7.4.8 Add genders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.7.4.9 Add ConMan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.7.4.10 Enable forwarding of system logs . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.7.5 Import files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.8 Finalizing provisioning configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.8.1 Assemble bootstrap image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.8.2 Assemble Virtual Node File System (VNFS) image . . . . . . . . . . . . . . . . . . . . 19
4.8.3 Register nodes for provisioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.8.4 Optional kernel arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.8.5 Optionally configure stateful provisioning . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.9 Boot compute nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Install OpenHPC Development Components 22
5.1 Development Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 MPI Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.4 Performance Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.5 Setup default development environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.6 3rd Party Libraries and Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Resource Manager Startup 24

3 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

7 Run a Test Job 25
7.1 Interactive execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2 Batch execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Appendices 28
A Installation Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
B Upgrading OpenHPC Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

B.1 New component variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
C Integration Test Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
D Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

D.1 Adding local Lmod modules to OpenHPC hierarchy . . . . . . . . . . . . . . . . . . . 33
D.2 Rebuilding Packages from Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

E Package Manifest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
F Package Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

1 Tech Preview

This guide highlights the initial availability of OpenHPC packages targeted for use on 64-bit ARM-based
architectures. This collection is being provided as a Tech Preview release initially, as there are some known
issues around provisioning and a subset of development packages. A running log of errata and fixes can be
found at the ARM Tech Preview Wiki.

The guide follows the general installation steps laid out in other companion OpenHPC recipes. However,
the provisioning steps as outlined with Warewulf (most of the steps in § 4.3 thru 4.9) are not directly usable
without additional modification to the PXE boot process. Consequently, users interested in leveraging pack-
ages from this Tech Preview are encouraged to enable the repo (see § 4.1) and install desired development
components (§ 5) on top of systems were the underlying base OS is pre-installed. In addition, if multiple
nodes are available, the SLURM resource manager can be used to schedule resources. Future OpenHPC
releases will expand on this tech preview to include validated recipes for a bare-metal cluster install.

Known Package Issues:

• GSL: a small subset of tests performed with the GSL library failed precision related tests. This is
currently attributed to the fact that the tests included in GSL are tuned for x86 which does 80-bit
extended precision.

• PAPI: hardware counter availability may not be available depending on the underlying ARM platform.
• MPI: The hardware used for validating this Tech Preview release contained only ethernet. The available

MPI stacks reflect this test environment.
• Hypre and SuperLU-dist: the libraries build, but when linking test applications unresolved symbols

remain
• Nagios and Ganglia: don’t work on SLES-12-SP2 due to missing PHP5 dependencies
• Lustre: since various ARM platforms require different kernels than the standard ones provided by the

SLES-12-SP2 and CentOS-7.3 distributions, building a lustre client that would work for these specific
platform configurations was beyond the scope of this release.

• Warewulf: the ARM Standard Base Boot Requirements and Standard Base System Architecture re-
quires specific UEFI support during the boot process which doesn’t seem to be compatible with the
way warewulf currently auto-provisions worker nodes. There is a work-around, but it requires some
manual intervention during installation and deployment of the nodes.

2 Introduction

This guide presents a simple cluster installation procedure using components from the OpenHPC software
stack. OpenHPC represents an aggregation of a number of common ingredients required to deploy and
manage an HPC Linux* cluster including provisioning tools, resource management, I/O clients, develop-
ment tools, and a variety of scientific libraries. These packages have been pre-built with HPC integration
in mind while conforming to common Linux distribution standards. The documentation herein is intended
to be reasonably generic, but uses the underlying motivation of a small, 4-node stateless cluster installation
to define a step-by-step process. Several optional customizations are included and the intent is that these
collective instructions can be modified as needed for local site customizations.

Base Linux Edition: this edition of the guide highlights installation without the use of a companion con-
figuration management system and directly uses distro-provided package management tools for component
selection. The steps that follow also highlight specific changes to system configuration files that are required
as part of the cluster install process.

5 Rev: 22344a4

https://github.com/openhpc/ohpc/wiki/ARM-Tech-Preview


Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

2.1 Target Audience

This guide is targeted at experienced Linux system administrators for HPC environments. Knowledge of
software package management, system networking, and PXE booting is assumed. Command-line input
examples are highlighted throughout this guide via the following syntax:

[sms]# echo "OpenHPC hello world"

Unless specified otherwise, the examples presented are executed with elevated (root) privileges. The
examples also presume use of the BASH login shell, though the equivalent commands in other shells can
be substituted. In addition to specific command-line instructions called out in this guide, an alternate
convention is used to highlight potentially useful tips or optional configuration options. These tips are
highlighted via the following format:

Tip

The dude abides. –Jeffrey Lebowski

2.2 Requirements/Assumptions

This installation recipe assumes the availability of a single head node master, and four compute nodes. The
master node serves as the overall system management server (SMS) and is provisioned with CentOS7.3 and is
subsequently configured to provision the remaining compute nodes with Warewulf in a stateless configuration.
The terms master and SMS are used interchangeably in this guide. For power management, we assume that
the compute node baseboard management controllers (BMCs) are available via IPMI from the chosen master
host. For file systems, we assume that the chosen master server will host an NFS file system that is made
available to the compute nodes. Installation information is also discussed to optionally include a Lustre file
system mount and in this case, the Lustre file system is assumed to exist previously.

eth1eth0
Data 

Center 
Network

high speed network

tcp networking

to compute eth interface
to compute BMC interface

compute 
nodes

Lustre* storage system

Master
(SMS)

Figure 1: Overview of physical cluster architecture.

An outline of the physical architecture discussed is shown in Figure 1 and highlights the high-level

6 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

networking configuration. The master host requires at least two Ethernet interfaces with eth0 connected to
the local data center network and eth1 used to provision and manage the cluster backend (note that these
interface names are examples and may be different depending on local settings and OS conventions). Two
logical IP interfaces are expected to each compute node: the first is the standard Ethernet interface that
will be used for provisioning and resource management. The second is used to connect to each host’s BMC
and is used for power management and remote console access. Physical connectivity for these two logical
IP networks is often accommodated via separate cabling and switching infrastructure; however, an alternate
configuration can also be accommodated via the use of a shared NIC, which runs a packet filter to divert
management packets between the host and BMC.

In addition to the IP networking, there is a high-speed network (InfiniBand in this recipe) that is also
connected to each of the hosts. This high speed network is used for application message passing and optionally
for Lustre connectivity as well.

2.3 Inputs

As this recipe details installing a cluster starting from bare-metal, there is a requirement to define IP ad-
dresses and gather hardware MAC addresses in order to support a controlled provisioning process. These
values are necessarily unique to the hardware being used, and this document uses variable substitution
(${variable}) in the command-line examples that follow to highlight where local site inputs are required.
A summary of the required and optional variables used throughout this recipe are presented below. Note
that while the example definitions above correspond to a small 4-node compute subsystem, the compute
parameters are defined in array format to accommodate logical extension to larger node counts.

• ${sms name} # Hostname for SMS server

• ${sms ip} # Internal IP address on SMS server

• ${sms eth internal} # Internal Ethernet interface on SMS

• ${eth provision} # Provisioning interface for computes

• ${internal netmask} # Subnet netmask for internal network

• ${ntp server} # Local ntp server for time synchronization

• ${bmc username} # BMC username for use by IPMI

• ${bmc password} # BMC password for use by IPMI

• ${num computes} # Total # of desired compute nodes

• ${c ip[0]}, ${c ip[1]}, ... # Desired compute node addresses

• ${c bmc[0]}, ${c bmc[1]}, ... # BMC addresses for computes

• ${c mac[0]}, ${c mac[1]}, ... # MAC addresses for computes

• ${c name[0]}, ${c name[1]}, ... # Host names for computes

• ${compute regex} # Regex matching all compute node names (e.g. “c*”)

• ${compute prefix} # Prefix for compute node names (e.g. “c”)

Optional:

• ${sysmgmtd host} # BeeGFS System Management host name

• ${mgs fs name} # Lustre MGS mount name

• ${sms ipoib} # IPoIB address for SMS server

• ${ipoib netmask} # Subnet netmask for internal IPoIB

• ${c ipoib[0]}, ${c ipoib[1]}, ... # IPoIB addresses for computes

• ${kargs} # Kernel boot arguments

7 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

3 Install Base Operating System (BOS)

In an external setting, installing the desired BOS on a master SMS host typically involves booting from a
DVD ISO image on a new server. With this approach, insert the CentOS7.3 DVD, power cycle the host, and
follow the distro provided directions to install the BOS on your chosen master host. Alternatively, if choos-
ing to use a pre-installed server, please verify that it is provisioned with the required CentOS7.3 distribution.

Prior to beginning the installation process of OpenHPC components, several additional considerations
are noted here for the SMS host configuration. First, the installation recipe herein assumes that the SMS
host name is resolvable locally. Depending on the manner in which you installed the BOS, there may be an
adequate entry already defined in /etc/hosts. If not, the following addition can be used to identify your
SMS host.

[sms]# echo ${sms_ip} ${sms_name} >> /etc/hosts

While it is theoretically possible to enable SELinux on a cluster provisioned with Warewulf, doing so is
beyond the scope of this document. Even the use of permissive mode can be problematic and we therefore
recommend disabling SELinux on the master SMS host. If SELinux components are installed locally, the
selinuxenabled command can be used to determine if SELinux is currently enabled. If enabled, consult
the distro documentation for information on how to disable.

Finally, provisioning services rely on DHCP, TFTP, and HTTP network protocols. Depending on the
local BOS configuration on the SMS host, default firewall rules may prohibit these services. Consequently,
this recipe assumes that the local firewall running on the SMS host is disabled. If installed, the default
firewall service can be disabled as follows:

[sms]# systemctl disable firewalld

[sms]# systemctl stop firewalld

4 Install OpenHPC Components

With the BOS installed and booted, the next step is to add desired OpenHPC packages onto the master
server in order to provide provisioning and resource management services for the rest of the cluster. The
following subsections highlight this process.

4.1 Enable OpenHPC repository for local use

To begin, enable use of the OpenHPC repository by adding it to the local list of available package repositories.
Note that this requires network access from your master server to the OpenHPC repository, or alternatively,
that the OpenHPC repository be mirrored locally. In cases where network external connectivity is available,
OpenHPC provides an ohpc-release package that includes GPG keys for package signing and repository
enablement. The example which follows illustrates installation of the ohpc-release package directly from
the OpenHPC build server.

[sms]# yum install http://build.openhpc.community/OpenHPC:/1.3/CentOS_7/aarch64/ohpc-release-1.3-1.el7.aarch64.rpm

8 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

Tip

Many sites may find it useful or necessary to maintain a local copy of the OpenHPC repositories. To facilitate
this need, standalone tar archives are provided – one containing a repository of binary packages as well as any
available updates, and one containing a repository of source RPMS. The tar files also contain a simple bash
script to configure the package manager to use the local repository after download. To use, simply unpack
the tarball where you would like to host the local repository and execute the make repo.sh script. Tar files
for this release can be found at http://build.openhpc.community/dist/1.3.1

In addition to the OpenHPC package repository, the master host also requires access to the standard
base OS distro repositories in order to resolve necessary dependencies. For CentOS7.3, the requirements
are to have access to both the base OS and EPEL repositories for which mirrors. Note that for this Tech
Preview, an altarch variation of the CentOS 7.3 release was used. Additional info and a pointer to available
ISO images is available at the links below:

• CentOS Alt Arch Info (aarch64)
• Repository/ISO images (7.3.1611)

4.2 Installation template

The collection of command-line instructions that follow in this guide, when combined with local site inputs,
can be used to implement a bare-metal system installation and configuration. The format of these com-
mands is intended to be usable via direct cut and paste (with variable substitution for site-specific settings).
Alternatively, the OpenHPC documentation package (docs-ohpc) includes a template script which includes
a summary of all of the commands used herein. This script can be used in conjunction with a simple text
file to define the local site variables defined in the previous section (§ 2.3) and is provided as a convenience
for administrators. For additional information on accessing this script, please see Appendix A.

4.3 Add provisioning services on master node

With the OpenHPC repository enabled, we can now begin adding desired components onto the master server.
This repository provides a number of aliases that group logical components together in order to help aid
in this process. For reference, a complete list of available group aliases and RPM packages available via
OpenHPC are provided in Appendix E. To add support for provisioning services, the following commands
illustrate addition of a common base package followed by the Warewulf provisioning system.

# Install base meta-packages

[sms]# yum -y install ohpc-base

[sms]# yum -y install ohpc-warewulf

Tip

Many server BIOS configurations have PXE network booting configured as the primary option in the boot
order by default. If your compute nodes have a different device as the first in the sequence, the ipmitool

utility can be used to enable PXE.

[sms]# ipmitool -E -I lanplus -H ${bmc_ipaddr} -U root chassis bootdev pxe options=persistent

9 Rev: 22344a4

http://build.openhpc.community/dist/1.3.1
https://wiki.centos.org/SpecialInterestGroup/AltArch/AArch64
http://mirror.centos.org/altarch/7.3.1611/os/aarch64/


Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

HPC systems rely on synchronized clocks throughout the system and the NTP protocol can be used to
facilitate this synchronization. To enable NTP services on the SMS host with a specific server ${ntp server},
issue the following:

[sms]# systemctl enable ntpd.service

[sms]# echo "server ${ntp_server}" >> /etc/ntp.conf

[sms]# systemctl restart ntpd

4.4 Add resource management services on master node

OpenHPC provides multiple options for distributed resource management. The following command adds the
Slurm workload manager server components to the chosen master host. Note that client-side components
will be added to the corresponding compute image in a subsequent step.

# Install slurm server meta-package

[sms]# yum -y install ohpc-slurm-server

# Identify resource manager hostname on master host

[sms]# perl -pi -e "s/ControlMachine=\S+/ControlMachine=${sms_name}/" /etc/slurm/slurm.conf

Tip

SLURM requires enumeration of the physical hardware characteristics for compute nodes under its control.
In particular, three configuration parameters combine to define consumable compute resources: Sockets,
CoresPerSocket, and ThreadsPerCore. The default configuration file provided via OpenHPC assumes dual-
socket, 8 cores per socket, and two threads per core for this 4-node example. If this does not reflect your
local hardware, please update the configuration file at /etc/slurm/slurm.conf accordingly to match your
particular hardware.

Other versions of this guide are available that describe installation of other resource management systems,
and they can be found in the docs-ohpc package.

4.5 Add InfiniBand support services on master node

The following command adds OFED and PSM support using base distro-provided drivers to the chosen
master host.

[sms]# yum -y groupinstall "InfiniBand Support"

[sms]# yum -y install infinipath-psm

# Load IB drivers

[sms]# systemctl start rdma

Tip

InfiniBand networks require a subnet management service that can typically be run on either an
administrative node, or on the switch itself. The optimal placement and configuration of the subnet
manager is beyond the scope of this document, but CentOS7.3 provides the opensm package should
you choose to run it on the master node.

10 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

With the InfiniBand drivers included, you can also enable (optional) IPoIB functionality which provides
a mechanism to send IP packets over the IB network. If you plan to mount a Lustre file system over
InfiniBand (see §4.7.4.3 for additional details), then having IPoIB enabled is a requirement for the Lustre
client. OpenHPC provides a template configuration file to aid in setting up an ib0 interface on the master
host. To use, copy the template provided and update the ${sms ipoib} and ${ipoib netmask} entries to
match local desired settings (alter ib0 naming as appropriate if system contains dual-ported or multiple
HCAs).

[sms]# cp /opt/ohpc/pub/examples/network/centos/ifcfg-ib0 /etc/sysconfig/network-scripts

# Define local IPoIB address and netmask

[sms]# perl -pi -e "s/master_ipoib/${sms_ipoib}/" /etc/sysconfig/network-scripts/ifcfg-ib0

[sms]# perl -pi -e "s/ipoib_netmask/${ipoib_netmask}/" /etc/sysconfig/network-scripts/ifcfg-ib0

# Initiate ib0

[sms]# ifup ib0

4.6 Complete basic Warewulf setup for master node

At this point, all of the packages necessary to use Warewulf on the master host should be installed. Next,
we need to update several configuration files in order to allow Warewulf to work with CentOS7.3 and to
support local provisioning using a second private interface (refer to Figure 1).

Tip

By default, Warewulf is configured to provision over the eth1 interface and the steps below include updating
this setting to override with a potentially alternatively-named interface specified by ${sms eth internal}.

# Configure Warewulf provisioning to use desired internal interface

[sms]# perl -pi -e "s/device = eth1/device = ${sms_eth_internal}/" /etc/warewulf/provision.conf

# Enable tftp service for compute node image distribution

[sms]# perl -pi -e "s/^\s+disable\s+= yes/ disable = no/" /etc/xinetd.d/tftp

# Enable internal interface for provisioning

[sms]# ifconfig ${sms_eth_internal} ${sms_ip} netmask ${internal_netmask} up

# Restart/enable relevant services to support provisioning

[sms]# systemctl restart xinetd

[sms]# systemctl enable mariadb.service

[sms]# systemctl restart mariadb

[sms]# systemctl enable httpd.service

[sms]# systemctl restart httpd

4.7 Define compute image for provisioning

With the provisioning services enabled, the next step is to define and customize a system image that can
subsequently be used to provision one or more compute nodes. The following subsections highlight this
process.

11 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

4.7.1 Build initial BOS image

The OpenHPC build of Warewulf includes specific enhancements enabling support for CentOS7.3. The
following steps illustrate the process to build a minimal, default image for use with Warewulf. We begin
by defining a directory structure on the master host that will represent the root filesystem of the compute
node. The default location for this example is in /opt/ohpc/admin/images/centos7.3.

Tip

Warewulf is configured by default to access an external repository (mirror.centos.org) during the wwmkchroot

process. If the master host cannot reach the public CentOS mirrors, or if you prefer to access a locally
cached mirror, set the ${YUM MIRROR} environment variable to your desired repo location prior to running the
wwmkchroot command below. For example:

# Override default OS repository (optional) - set YUM_MIRROR variable to desired repo location

[sms]# export YUM_MIRROR=${BOS_MIRROR}

# Define chroot location

[sms]# export CHROOT=/opt/ohpc/admin/images/centos7.3

# Build initial chroot image

[sms]# wwmkchroot centos-7 $CHROOT

4.7.2 Add OpenHPC components

The wwmkchroot process used in the previous step is designed to provide a minimal CentOS7.3 configuration.
Next, we add additional components to include resource management client services, InfiniBand drivers, and
other additional packages to support the default OpenHPC environment. This process augments the chroot-
based install performed by wwmkchroot to modify the base provisioning image and will access the BOS
and OpenHPC repositories to resolve package install requests. We begin by installing a few common base
packages:

# Install compute node base meta-package

[sms]# yum -y --installroot=$CHROOT install ohpc-base-compute

To access the remote repositories by hostname (and not IP addresses), the chroot environment needs to
be updated to enable DNS resolution. Assuming that the master host has a working DNS configuration in
place, the chroot environment can be updated with a copy of the configuration as follows:

[sms]# cp -p /etc/resolv.conf $CHROOT/etc/resolv.conf

Now, we can include additional components to the compute instance using yum to install into the chroot
location defined previously:

# Add Slurm client support meta-package

[sms]# yum -y --installroot=$CHROOT install ohpc-slurm-client

# Add IB support and enable

[sms]# yum -y --installroot=$CHROOT groupinstall "InfiniBand Support"

[sms]# yum -y --installroot=$CHROOT install infinipath-psm

12 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

[sms]# chroot $CHROOT systemctl enable rdma

# Add Network Time Protocol (NTP) support

[sms]# yum -y --installroot=$CHROOT install ntp

# Add kernel drivers

[sms]# yum -y --installroot=$CHROOT install kernel

# Include modules user environment

[sms]# yum -y --installroot=$CHROOT install lmod-ohpc

4.7.3 Customize system configuration

Prior to assembling the image, it is advantageous to perform any additional customization within the chroot
environment created for the desired compute instance. The following steps document the process to add a
local ssh key created by Warewulf to support remote access, identify the resource manager server, configure
NTP for compute resources, and enable NFS mounting of a $HOME file system and the public OpenHPC
install path (/opt/ohpc/pub) that will be hosted by the master host in this example configuration.

# Initialize warewulf database and add new cluster key to base image

[sms]# wwinit database

[sms]# wwinit ssh_keys

[sms]# cat ~/.ssh/cluster.pub >> $CHROOT/root/.ssh/authorized_keys

# Add NFS client mounts of /home and /opt/ohpc/pub to base image

[sms]# echo "${sms_ip}:/home /home nfs nfsvers=3,rsize=1024,wsize=1024,cto 0 0" >> $CHROOT/etc/fstab
[sms]# echo "${sms_ip}:/opt/ohpc/pub /opt/ohpc/pub nfs nfsvers=3 0 0" >> $CHROOT/etc/fstab

# Export /home and OpenHPC public packages from master server

[sms]# echo "/home *(rw,no_subtree_check,fsid=10,no_root_squash)" >> /etc/exports

[sms]# echo "/opt/ohpc/pub *(ro,no_subtree_check,fsid=11)" >> /etc/exports

[sms]# exportfs -a

[sms]# systemctl restart nfs-server

[sms]# systemctl enable nfs-server

# Enable NTP time service on computes and identify master host as local NTP server

[sms]# chroot $CHROOT systemctl enable ntpd

[sms]# echo "server ${sms_ip}" >> $CHROOT/etc/ntp.conf

4.7.4 Additional Customization (optional)

This section highlights common additional customizations that can optionally be applied to the local cluster
environment. These customizations include:

• Increase memlock limits
• Restrict ssh access to compute resources
• Add BeeGFS client
• Add Lustre client
• Enable syslog forwarding
• Add Nagios Core monitoring

• Add Ganglia monitoring
• Add ClusterShell
• Add mrsh
• Add genders
• Add ConMan

Details on the steps required for each of these customizations are discussed further in the following sections.

13 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

4.7.4.1 Increase locked memory limits In order to utilize InfiniBand as the underlying high speed
interconnect, it is generally necessary to increase the locked memory settings for system users. This can be
accomplished by updating the /etc/security/limits.conf file and this should be performed within the
compute image and on all job submission hosts. In this recipe, jobs are submitted from the master host, and
the following commands can be used to update the maximum locked memory settings on both the master
host and the compute image:

# Update memlock settings on master

[sms]# perl -pi -e 's/# End of file/\* soft memlock unlimited\n$&/s' /etc/security/limits.conf

[sms]# perl -pi -e 's/# End of file/\* hard memlock unlimited\n$&/s' /etc/security/limits.conf

# Update memlock settings within compute image

[sms]# perl -pi -e 's/# End of file/\* soft memlock unlimited\n$&/s' $CHROOT/etc/security/limits.conf
[sms]# perl -pi -e 's/# End of file/\* hard memlock unlimited\n$&/s' $CHROOT/etc/security/limits.conf

4.7.4.2 Enable ssh control via resource manager An additional optional customization that is
recommended is to restrict ssh access on compute nodes to only allow access by users who have an active
job associated with the node. This can be enabled via the use of a pluggable authentication module (PAM)
provided as part of the Slurm package installs. To enable this feature within the compute image, issue the
following:

[sms]# echo "account required pam_slurm.so" >> $CHROOT/etc/pam.d/sshd

4.7.4.3 Add Lustre client To add Lustre client support on the cluster, it necessary to install the client
and associated modules on each host needing to access a Lustre file system. In this recipe, it is assumed
that the Lustre file system is hosted by servers that are pre-existing and are not part of the install process.
Outlining the variety of Lustre client mounting options is beyond the scope of this document, but the general
requirement is to add a mount entry for the desired file system that defines the management server (MGS)
and underlying network transport protocol. To add client mounts on both the master server and compute
image, the following commands can be used. Note that the Lustre file system to be mounted is identified
by the ${mgs fs name} variable. In this example, the file system is configured to be mounted locally as
/mnt/lustre.

# Add Lustre client software to master host

[sms]# yum -y install lustre-client-ohpc lustre-client-ohpc-modules

# Include Lustre client software in compute image

[sms]# yum -y --installroot=$CHROOT install lustre-client-ohpc lustre-client-ohpc-modules

# Include mount point and file system mount in compute image

[sms]# mkdir $CHROOT/mnt/lustre
[sms]# echo "${mgs_fs_name} /mnt/lustre lustre defaults,_netdev,localflock 0 0" >> $CHROOT/etc/fstab

The default underlying network type used by Lustre is tcp. If your external Lustre file system is to be
mounted using a network type other than tcp, additional configuration files are necessary to identify the de-
sired network type. The example below illustrates creation of modprobe configuration files instructing Lustre
to use an InfiniBand network with the o2ib LNET driver attached to ib0. Note that these modifications
are made to both the master host and compute image.

14 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

[sms]# echo "options lnet networks=o2ib(ib0)" >> /etc/modprobe.d/lustre.conf

[sms]# echo "options lnet networks=o2ib(ib0)" >> $CHROOT/etc/modprobe.d/lustre.conf

With the Lustre configuration complete, the client can be mounted on the master host as follows:

[sms]# mkdir /mnt/lustre

[sms]# mount -t lustre -o localflock ${mgs_fs_name} /mnt/lustre

4.7.4.4 Add Nagios monitoring Nagios is an open source infrastructure monitoring package that
monitors servers, switches, applications, and services and offers user-defined alerting facilities. As provided
by OpenHPC, it consists of a base monitoring daemon and a set of plug-ins for monitoring various aspects
of an HPC cluster. The following commands can be used to install and configure a Nagios server on the
master node, and add the facility to run tests and gather metrics from provisioned compute nodes.

# Install Nagios meta-package on master host

[sms]# yum -y install ohpc-nagios

# Install plugins into compute node image

[sms]# yum -y --installroot=$CHROOT install nagios-plugins-all-ohpc nrpe-ohpc

# Enable and configure NRPE in compute image

[sms]# chroot $CHROOT systemctl enable nrpe

[sms]# perl -pi -e "s/^allowed_hosts=/# allowed_hosts=/" $CHROOT/etc/nagios/nrpe.cfg
[sms]# echo "nrpe 5666/tcp # NRPE" >> $CHROOT/etc/services
[sms]# echo "nrpe : ${sms_ip} : ALLOW" >> $CHROOT/etc/hosts.allow
[sms]# echo "nrpe : ALL : DENY" >> $CHROOT/etc/hosts.allow
[sms]# chroot $CHROOT /usr/sbin/useradd -c "NRPE user for the NRPE service" -d /var/run/nrpe \

-r -g nrpe -s /sbin/nologin nrpe

[sms]# chroot $CHROOT /usr/sbin/groupadd -r nrpe

# Configure remote services to test on compute nodes

[sms]# mv /etc/nagios/conf.d/services.cfg.example /etc/nagios/conf.d/services.cfg

# Define compute nodes as hosts to monitor

[sms]# mv /etc/nagios/conf.d/hosts.cfg.example /etc/nagios/conf.d/hosts.cfg

[sms]# for ((i=0; i<$num_computes; i++)) ; do

perl -pi -e "s/HOSTNAME$(($i+1))/${c_name[$i]}/ || s/HOST$(($i+1))_IP/${c_ip[$i]}/" \

/etc/nagios/conf.d/hosts.cfg

done

# Update location of mail binary for alert commands

[sms]# perl -pi -e "s/ \/bin\/mail/ \/usr\/bin\/mailx/g" /etc/nagios/objects/commands.cfg

# Update email address of contact for alerts

[sms]# perl -pi -e "s/nagios\@localhost/root\@${sms_name}/" /etc/nagios/objects/contacts.cfg

# Add check_ssh command for remote hosts

[sms]# echo command[check_ssh]=/usr/lib64/nagios/plugins/check_ssh localhost \

>> $CHROOT/etc/nagios/nrpe.cfg

# Enable Nagios on master, and configure

[sms]# chkconfig nagios on

[sms]# systemctl start nagios

[sms]# chmod u+s `which ping`

15 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

4.7.4.5 Add Ganglia monitoring Ganglia is a scalable distributed system monitoring tool for high-
performance computing systems such as clusters and grids. It allows the user to remotely view live or
historical statistics (such as CPU load averages or network utilization) for all machines running the gmond
daemon. The following commands can be used to enable Ganglia to monitor both the master and compute
hosts.

# Install Ganglia meta-package on master

[sms]# yum -y install ohpc-ganglia

# Install Ganglia compute node daemon

[sms]# yum -y --installroot=$CHROOT install ganglia-gmond-ohpc

# Use example configuration script to enable unicast receiver on master host

[sms]# cp /opt/ohpc/pub/examples/ganglia/gmond.conf /etc/ganglia/gmond.conf

[sms]# perl -pi -e "s/<sms>/${sms_name}/" /etc/ganglia/gmond.conf

# Add configuration to compute image and provide gridname

[sms]# cp /etc/ganglia/gmond.conf $CHROOT/etc/ganglia/gmond.conf
[sms]# echo "gridname MySite" >> /etc/ganglia/gmetad.conf

# Start and enable Ganglia services

[sms]# systemctl enable gmond

[sms]# systemctl enable gmetad

[sms]# systemctl start gmond

[sms]# systemctl start gmetad

[sms]# chroot $CHROOT systemctl enable gmond

# Restart web server

[sms]# systemctl try-restart httpd

Once enabled and running, Ganglia should provide access to a web-based monitoring console on the master
host. Read access to monitoring metrics will be enabled by default and can be accessed via a web browser.
When running a web browser directly on the master host, the Ganglia top-level overview is available at
http://localhost/ganglia. When accessing remotely, replace localhost with the chosen name of your master
host (${sms name}).

4.7.4.6 Add ClusterShell ClusterShell is an event-based Python library to execute commands in par-
allel across cluster nodes. Installation and basic configuration defining three node groups (adm, compute,
and all) is as follows:

# Install ClusterShell

[sms]# yum -y install clustershell-ohpc

# Setup node definitions

[sms]# cd /etc/clustershell/groups.d

[sms]# mv local.cfg local.cfg.orig

[sms]# echo "adm: ${sms_name}" > local.cfg

[sms]# echo "compute: ${compute_prefix}[1-${num_computes}]" >> local.cfg

[sms]# echo "all: @adm,@compute" >> local.cfg

16 Rev: 22344a4

http://localhost/ganglia


Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

4.7.4.7 Add mrsh mrsh is a secure remote shell utility, like ssh, which uses munge for authentication
and encryption. By using the munge installation used by Slurm, mrsh provides shell access to systems using
the same munge key without having to track ssh keys. Like ssh, mrsh provides a remote copy command,
mrcp, and can be used as a rcmd by pdsh. Example installation and configuration is as follows:

# Install mrsh

[sms]# yum -y install mrsh-ohpc mrsh-rsh-compat-ohpc

[sms]# yum -y --installroot=$CHROOT install mrsh-ohpc mrsh-rsh-compat-ohpc mrsh-server-ohpc

# Identify mshell and mlogin in services file

[sms]# echo "mshell 21212/tcp # mrshd" >> /etc/services

[sms]# echo "mlogin 541/tcp # mrlogind" >> /etc/services

# Enable xinetd in compute node image

[sms]# chroot $CHROOT systemctl enable xinetd

4.7.4.8 Add genders genders is a static cluster configuration database or node typing database used
for cluster configuration management. Other tools and users can access the genders database in order to
make decisions about where an action, or even what action, is appropriate based on associated types or
”genders”. Values may also be assigned to and retrieved from a gender to provide further granularity. The
following example highlights installation and configuration of two genders: compute and bmc.

# Install genders

[sms]# yum -y install genders-ohpc

# Generate a sample genders file

[sms]# echo -e "${sms_name}\tsms" > /etc/genders

[sms]# for ((i=0; i<$num_computes; i++)) ; do

echo -e "${c_name[$i]}\tcompute,bmc=${c_bmc[$i]}"
done >> /etc/genders

4.7.4.9 Add ConMan ConMan is a serial console management program designed to support a large
number of console devices and simultaneous users. It supports logging console device output and connecting
to compute node consoles via IPMI serial-over-lan. Installation and example configuration is outlined below.

# Install conman to provide a front-end to compute consoles and log output

[sms]# yum -y install conman-ohpc

# Configure conman for computes (note your IPMI password is required for console access)

[sms]# for ((i=0; i<$num_computes; i++)) ; do

echo -n 'CONSOLE name="'${c_name[$i]}'" dev="ipmi:'${c_bmc[$i]}'" '
echo 'ipmiopts="'U:${bmc_username},P:${IPMI_PASSWORD:-undefined},W:solpayloadsize'"'

done >> /etc/conman.conf

# Enable and start conman

[sms]# systemctl enable conman

[sms]# systemctl start conman

Note that an additional kernel boot option is typically necessary to enable serial console output. This option
is highlighted in §4.8.4 after compute nodes have been registered with the provisioning system.

17 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

4.7.4.10 Enable forwarding of system logs It is often desirable to consolidate system logging infor-
mation for the cluster in a central location, both to provide easy access to the data, and to reduce the impact
of storing data inside the stateless compute node’s memory footprint. The following commands highlight
the steps necessary to configure compute nodes to forward their logs to the SMS, and to allow the SMS to
accept these log requests.

# Configure SMS to receive messages and reload rsyslog configuration

[sms]# perl -pi -e "s/\\#\\\$ModLoad imudp/\\\$ModLoad imudp/" /etc/rsyslog.conf

[sms]# perl -pi -e "s/\\#\\\$UDPServerRun 514/\\\$UDPServerRun 514/" /etc/rsyslog.conf

[sms]# systemctl restart rsyslog

# Define compute node forwarding destination

[sms]# echo "*.* @${sms_ip}:514" >> $CHROOT/etc/rsyslog.conf

# Disable most local logging on computes. Emergency and boot logs will remain on the compute nodes

[sms]# perl -pi -e "s/^\*\.info/\\#\*\.info/" $CHROOT/etc/rsyslog.conf
[sms]# perl -pi -e "s/^authpriv/\\#authpriv/" $CHROOT/etc/rsyslog.conf
[sms]# perl -pi -e "s/^mail/\\#mail/" $CHROOT/etc/rsyslog.conf
[sms]# perl -pi -e "s/^cron/\\#cron/" $CHROOT/etc/rsyslog.conf
[sms]# perl -pi -e "s/^uucp/\\#uucp/" $CHROOT/etc/rsyslog.conf

4.7.5 Import files

The Warewulf system includes functionality to import arbitrary files from the provisioning server for distri-
bution to managed hosts. This is one way to distribute user credentials to compute nodes. To import local
file-based credentials, issue the following:

[sms]# wwsh file import /etc/passwd

[sms]# wwsh file import /etc/group

[sms]# wwsh file import /etc/shadow

Similarly, to import the global Slurm configuration file and the cryptographic key that is required by the
munge authentication library to be available on every host in the resource management pool, issue the
following:

[sms]# wwsh file import /etc/slurm/slurm.conf

[sms]# wwsh file import /etc/munge/munge.key

Finally, to add optional support for controlling IPoIB interfaces (see §4.5), OpenHPC includes a template
file for Warewulf that can optionally be imported and used later to provision ib0 network settings.

[sms]# wwsh file import /opt/ohpc/pub/examples/network/centos/ifcfg-ib0.ww

[sms]# wwsh -y file set ifcfg-ib0.ww --path=/etc/sysconfig/network-scripts/ifcfg-ib0

4.8 Finalizing provisioning configuration

Warewulf employs a two-stage boot process for provisioning nodes via creation of a bootstrap image that
is used to initialize the process, and a virtual node file system capsule containing the full system image.
This section highlights creation of the necessary provisioning images, followed by the registration of desired
compute nodes.

18 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

4.8.1 Assemble bootstrap image

The bootstrap image includes the runtime kernel and associated modules, as well as some simple scripts to
complete the provisioning process. The following commands highlight the inclusion of additional drivers and
creation of the bootstrap image based on the running kernel.

# (Optional) Include BeeGFS/Lustre drivers; needed if enabling additional kernel modules on computes

[sms]# export WW_CONF=/etc/warewulf/bootstrap.conf

[sms]# echo "drivers += updates/kernel/" >> $WW_CONF

# (Optional) Include overlayfs drivers; needed by Singularity

[sms]# echo "drivers += overlay" >> $WW_CONF

# Build bootstrap image

[sms]# wwbootstrap `uname -r`

4.8.2 Assemble Virtual Node File System (VNFS) image

With the local site customizations in place, the following step uses the wwvnfs command to assemble a VNFS
capsule from the chroot environment defined for the compute instance.

[sms]# wwvnfs --chroot $CHROOT

4.8.3 Register nodes for provisioning

In preparation for provisioning, we can now define the desired network settings for four example compute
nodes with the underlying provisioning system and restart the dhcp service. Note the use of variable names
for the desired compute hostnames, node IPs, and MAC addresses which should be modified to accommodate
local settings and hardware. By default, Warewulf uses network interface names of the eth# variety and adds
kernel boot arguments to maintain this scheme on newer kernels. Consequently, when specifying the desired
provisioning interface via the $eth provision variable, it should follow this convention. Alternatively, if
you prefer to use the predictable network interface naming scheme (e.g. names like en4s0f0), additional
steps are included to alter the default kernel boot arguments and take the eth# named interface down after
bootstrapping so the normal init process can bring it up again using the desired name.

Also included in these steps are commands to enable Warewulf to manage IPoIB settings and correspond-
ing definitions of IPoIB addresses for the compute nodes. This is typically optional unless you are planning
to include a Lustre client mount over InfiniBand. The final step in this process associates the VNFS image
assembled in previous steps with the newly defined compute nodes, utilizing the user credential files and
munge key that were imported in §4.7.5.

19 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

# Set provisioning interface as the default networking device

[sms]# echo "GATEWAYDEV=${eth_provision}" > /tmp/network.$$
[sms]# wwsh -y file import /tmp/network.$$ --name network

[sms]# wwsh -y file set network --path /etc/sysconfig/network --mode=0644 --uid=0

# Add nodes to Warewulf data store

[sms]# for ((i=0; i<$num_computes; i++)) ; do

wwsh -y node new ${c_name[i]} --ipaddr=${c_ip[i]} --hwaddr=${c_mac[i]} -D ${eth_provision}
done

# Additional step required if desiring to use predictable network interface

# naming schemes (e.g. en4s0f0). Skip if using eth# style names.

[sms]# wwsh provision set "${compute_regex}" --kargs "net.ifnames=1,biosdevname=1"

[sms]# wwsh provision set --postnetdown=1 "${compute_regex}"

# Define provisioning image for hosts

[sms]# wwsh -y provision set "${compute_regex}" --vnfs=centos7.3 --bootstrap=`uname -r` \

--files=dynamic_hosts,passwd,group,shadow,slurm.conf,munge.key,network

# Optionally define IPoIB network settings (required if planning to mount Lustre over IB)

[sms]# for ((i=0; i<$num_computes; i++)) ; do

wwsh -y node set ${c_name[$i]} -D ib0 --ipaddr=${c_ipoib[$i]} --netmask=${ipoib_netmask}
done

[sms]# wwsh -y provision set "${compute_regex}" --fileadd=ifcfg-ib0.ww

Tip

Warewulf includes a utility named wwnodescan to automatically register new compute nodes versus the
outlined node-addition approach which requires hardware MAC addresses to be gathered in advance. With
wwnodescan, nodes will be added to the Warewulf database in the order in which their DHCP requests are
received by the master, so care must be taken to boot nodes in the order one wishes to see preserved in the
Warewulf database. The IP address provided will be incremented after each node is found, and the utility
will exit after all specified nodes have been found. Example usage is highlighted below:

[sms]# wwnodescan --netdev=${eth_provision} --ipaddr=${c_ip[0]} --netmask=${internal_netmask} \

--vnfs=centos7.3 --bootstrap=`uname -r` --listen=${sms_eth_internal} ${c_name[0]}-${c_name[3]}

# Restart dhcp / update PXE

[sms]# systemctl restart dhcpd

[sms]# wwsh pxe update

4.8.4 Optional kernel arguments

If you chose to enable ConMan in §4.7.4.9, additional boot-time kernel arguments are needed to enable serial
console redirection. An example provisioning setting which adds to any other kernel arguments defined in
${kargs} is as follows:

20 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

# Define node kernel arguments to support SOL console

[sms]# wwsh -y provision set "${compute_regex}" --kargs "${kargs} console=ttyS1,115200"

4.8.5 Optionally configure stateful provisioning

Warewulf normally defaults to running the assembled VNFS image out of system memory in a stateless
configuration. Alternatively, Warewulf can also be used to partition and format persistent storage such that
the VNFS image can be installed locally to disk in a stateful manner. This does, however, require that a
boot loader (GRUB) be added to the image as follows:

# Add GRUB2 bootloader and re-assemble VNFS image

[sms]# yum -y --installroot=$CHROOT install grub2

[sms]# wwvnfs --chroot $CHROOT

Enabling stateful nodes also requires additional site-specific, disk-related parameters in the Warewulf con-
figuration. In the example that follows, the compute node configuration is updated to define where to install
the GRUB bootloader, which disk to partition, which partition to format, and what the filesystem layout
will look like.

# Update node object parameters

[sms]# export sda1="mountpoint=/boot:dev=sda1:type=ext3:size=500"

[sms]# export sda2="dev=sda2:type=swap:size=32768"

[sms]# export sda3="mountpoint=/:dev=sda3:type=ext3:size=fill"

[sms]# wwsh -y object modify -s bootloader=sda -t node "${compute_regex}"
[sms]# wwsh -y object modify -s diskpartition=sda -t node "${compute_regex}"
[sms]# wwsh -y object modify -s diskformat=sda1,sda2,sda3 -t node "${compute_regex}"
[sms]# wwsh -y object modify -s filesystems="$sda1,$sda2,$sda3" -t node "${compute_regex}"

Upon subsequent reboot of the modified nodes, Warewulf will partition and format the disk to host the
desired VNFS image. Once installed to disk, Warewulf can be instructed to subsequently boot from local
storage (alternatively, the BIOS boot option order could be updated to reflect a desire to boot from disk):

# After provisioning, update node object parameters to boot from local storage

[sms]# wwsh -y object modify -s bootlocal=EXIT -t node "${compute_regex}"

Deleting the bootlocal object parameter will cause Warewulf to once again reformat and re-install to local
storage upon a new PXE boot request.

4.9 Boot compute nodes

At this point, the master server should be able to boot the newly defined compute nodes. Assuming
that the compute node BIOS settings are configured to boot over PXE, all that is required to initiate the
provisioning process is to power cycle each of the desired hosts using IPMI access. The following commands
use the ipmitool utility to initiate power resets on each of the four compute hosts. Note that the utility
requires that the IPMI PASSWORD environment variable be set with the local BMC password in order to work
interactively.

[sms]# for ((i=0; i<${num_computes}; i++)) ; do

ipmitool -E -I lanplus -H ${c_bmc[$i]} -U ${bmc_username} chassis power reset

done

Once kicked off, the boot process should take less than 5 minutes (depending on BIOS post times) and
you can verify that the compute hosts are available via ssh, or via parallel ssh tools to multiple hosts. For

21 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

example, to run a command on the newly imaged compute hosts using pdsh, execute the following:

[sms]# pdsh -w c[1-4] uptime

c1 05:03am up 0:02, 0 users, load average: 0.20, 0.13, 0.05

c2 05:03am up 0:02, 0 users, load average: 0.20, 0.14, 0.06

c3 05:03am up 0:02, 0 users, load average: 0.19, 0.15, 0.06

c4 05:03am up 0:02, 0 users, load average: 0.15, 0.12, 0.05

Tip

While the pxelinux.0 and lpxelinux.0 files that ship with Warewulf to enable network boot support a
wide range of hardware, some hosts may boot more reliably or faster using the BOS versions provided
via the syslinux-tftpboot package. If you encounter PXE issues, consider replacing the pxelinux.0 and
lpxelinux.0 files supplied with warewulf-provision-ohpc with versions from syslinux-tftpboot.

5 Install OpenHPC Development Components

The install procedure outlined in §4 highlighted the steps necessary to install a master host, assemble
and customize a compute image, and provision several compute hosts from bare-metal. With these steps
completed, additional OpenHPC-provided packages can now be added to support a flexible HPC development
environment including development tools, C/C++/Fortran compilers, MPI stacks, and a variety of 3rd party
libraries. The following subsections highlight the additional software installation procedures.

5.1 Development Tools

To aid in general development efforts, OpenHPC provides recent versions of the GNU autotools collection,
the Valgrind memory debugger, EasyBuild, and Spack. These can be installed as follows:

# Install autotools meta-package

[sms]# yum -y install ohpc-autotools

[sms]# yum -y install EasyBuild-ohpc

[sms]# yum -y install hwloc-ohpc

[sms]# yum -y install spack-ohpc

[sms]# yum -y install valgrind-ohpc

5.2 Compilers

OpenHPC presently packages the GNU compiler toolchain integrated with the underlying modules-environment
system in a hierarchical fashion. The modules system will conditionally present compiler-dependent software
based on the toolchain currently loaded.

[sms]# yum -y install gnu7-compilers-ohpc

5.3 MPI Stacks

For MPI development support, OpenHPC presently provides pre-packaged builds for two MPI families. Note
that for this Tech Preview release, MPI tests have only been carried using an ethernet transport layer.

[sms]# yum -y install openmpi-gnu7-ohpc mpich-gnu7-ohpc

22 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

5.4 Performance Tools

OpenHPC provides a variety of open-source tools to aid in application performance analysis (refer to Ap-
pendix E for a listing of available packages). This group of tools can be installed as follows:

# Install perf-tools meta-package

[sms]# yum -y install ohpc-gnu7-perf-tools

5.5 Setup default development environment

System users often find it convenient to have a default development environment in place so that compilation
can be performed directly for parallel programs requiring MPI. This setup can be conveniently enabled via
modules and the OpenHPC modules environment is pre-configured to load an ohpc module on login (if
present). The following package install provides a default environment that enables autotools, the GNU
compiler toolchain, and the MVAPICH2 MPI stack.

[sms]# yum -y install lmod-defaults-gnu7-mvapich2-ohpc

Tip

If you want to change the default environment from the suggestion above, OpenHPC also provides the GNU
compiler toolchain with the OpenMPI and MPICH stacks:

• lmod-defaults-gnu7-openmpi-ohpc
• lmod-defaults-gnu7-mpich-ohpc

5.6 3rd Party Libraries and Tools

OpenHPC provides pre-packaged builds for a number of popular open-source tools and libraries used by HPC
applications and developers. For example, OpenHPC provides builds for FFTW and HDF5 (including serial
and parallel I/O support), and the GNU Scientific Library (GSL). Again, multiple builds of each package
are available in the OpenHPC repository to support multiple compiler and MPI family combinations where
appropriate. Note, however, that not all combinatorial permutations may be available for components where
there are known license incompatibilities. The general naming convention for builds provided by OpenHPC
is to append the compiler and MPI family name that the library was built against directly into the package
name. For example, libraries that do not require MPI as part of the build process adopt the following RPM
name:

package-<compiler family>-ohpc-<package version>-<release>.rpm

Packages that do require MPI as part of the build expand upon this convention to additionally include the
MPI family name as follows:

package-<compiler family>-<mpi family>-ohpc-<package version>-<release>.rpm

To illustrate this further, the command below queries the locally configured repositories to identify all of
the available PETSc packages that were built with the GNU toolchain. The resulting output that is included
shows that pre-built versions are available for each of the supported MPI families presented in §5.3.

23 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

[sms]# yum search petsc-gnu7 ohpc

Loaded plugins: fastestmirror

Loading mirror speeds from cached hostfile

=========================== N/S matched: petsc-gnu7, ohpc ===========================

petsc-gnu7-impi-ohpc.x86_64 : Portable Extensible Toolkit for Scientific Computation

petsc-gnu7-mpich-ohpc.x86_64 : Portable Extensible Toolkit for Scientific Computation

petsc-gnu7-mvapich2-ohpc.x86_64 : Portable Extensible Toolkit for Scientific Computation

petsc-gnu7-openmpi-ohpc.x86_64 : Portable Extensible Toolkit for Scientific Computation

Tip

OpenHPC-provided 3rd party builds are configured to be installed into a common top-level repository so that
they can be easily exported to desired hosts within the cluster. This common top-level path (/opt/ohpc/pub)
was previously configured to be mounted on compute nodes in §4.7.3, so the packages will be immediately
available for use on the cluster after installation on the master host.

For convenience, OpenHPC provides package aliases for these 3rd party libraries and utilities that can
be used to install available libraries for use with the GNU compiler family toolchain. For parallel libraries,
aliases are grouped by MPI family toolchain so that administrators can choose a subset should they favor a
particular MPI stack. Please refer to Appendix E for a more detailed listing of all available packages in each
of these functional areas. To install all available package offerings within OpenHPC, issue the following:

# Install 3rd party libraries/tools meta-packages built with GNU toolchain

[sms]# yum -y install ohpc-gnu7-serial-libs

[sms]# yum -y install ohpc-gnu7-io-libs

[sms]# yum -y install ohpc-gnu7-python-libs

[sms]# yum -y install ohpc-gnu7-runtimes

# Install parallel lib meta-packages for all available MPI toolchains

[sms]# yum -y install ohpc-gnu7-mpich-parallel-libs

[sms]# yum -y install ohpc-gnu7-openmpi-parallel-libs

6 Resource Manager Startup

In section §4, the Slurm resource manager was installed and configured for use on both the master host and
compute node instances. With the cluster nodes up and functional, we can now startup the resource manager
services in preparation for running user jobs. Generally, this is a two-step process that requires starting up
the controller daemons on the master host and the client daemons on each of the compute hosts. Note that
Slurm leverages the use of the munge library to provide authentication services and this daemon also needs
to be running on all hosts within the resource management pool. The following commands can be used to
startup the necessary services to support resource management under Slurm.

# Start munge and slurm controller on master host

[sms]# systemctl enable munge

[sms]# systemctl enable slurmctld

[sms]# systemctl start munge

[sms]# systemctl start slurmctld

# Start slurm clients on compute hosts

[sms]# pdsh -w c[1-4] systemctl start slurmd

24 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

7 Run a Test Job

With the resource manager enabled for production usage, users should now be able to run jobs. To demon-
strate this, we will add a “test” user on the master host that can be used to run an example job.

[sms]# useradd -m test

Warewulf installs a utility on the compute nodes to automatically synchronize known files from the
provisioning server at five minute intervals. In this recipe, recall that we previously registered credential files
with Warewulf (e.g. passwd, group, and shadow) so that these files would be propagated during compute
node imaging. However, with the addition of a new “test” user above, the files have been outdated and we
need to update the Warewulf database to incorporate the additions. This re-sync process can be accomplished
as follows:

[sms]# wwsh file resync passwd shadow group

Tip

After re-syncing to notify Warewulf of file modifications made on the master host, it should take approximately
5 minutes for the changes to propagate. However, you can also manually pull the changes from compute nodes
via the following:

[sms]# pdsh -w c[1-4] /warewulf/bin/wwgetfiles

OpenHPC includes a simple “hello-world” MPI application in the /opt/ohpc/pub/examples directory
that can be used for this quick compilation and execution. OpenHPC also provides a companion job-launch
script named prun that is installed in concert with the pre-packaged MPI toolchains. At present, OpenHPC
is unable to include the PMI process management server normally included within Slurm which implies that
srun cannot be use for MPI job launch. Instead, native job launch mechanisms provided by the MPI stacks
are utilized and prun abstracts this process for the various stacks to retain a single launch command.

7.1 Interactive execution

To use the newly created “test” account to compile and execute the application interactively through the
resource manager, execute the following (note the use of prun for parallel job launch which summarizes the
underlying native job launch mechanism being used):

# Switch to "test" user

[sms]# su - test

# Compile MPI "hello world" example

[test@sms ~]$ mpicc -O3 /opt/ohpc/pub/examples/mpi/hello.c

# Submit interactive job request and use prun to launch executable

[test@sms ~]$ srun -n 8 -N 2 --pty /bin/bash

[test@c1 ~]$ prun ./a.out

[prun] Master compute host = c1

[prun] Resource manager = slurm

[prun] Launch cmd = mpiexec.hydra -bootstrap slurm ./a.out

25 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

Hello, world (8 procs total)

--> Process # 0 of 8 is alive. -> c1

--> Process # 4 of 8 is alive. -> c2

--> Process # 1 of 8 is alive. -> c1

--> Process # 5 of 8 is alive. -> c2

--> Process # 2 of 8 is alive. -> c1

--> Process # 6 of 8 is alive. -> c2

--> Process # 3 of 8 is alive. -> c1

--> Process # 7 of 8 is alive. -> c2

Tip

The following table provides approximate command equivalences between SLURM and PBS Pro:

Command PBS Pro SLURM

Submit batch job qsub [job script] sbatch [job script]

Request interactive shell qsub -I /bin/bash srun –pty /bin/bash

Delete job qdel [job id] scancel [job id]

Queue status qstat -q sinfo

Job status qstat -f [job id] scontrol show job [job id]

Node status pbsnodes [node name] scontrol show node [node id]

26 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

7.2 Batch execution

For batch execution, OpenHPC provides a simple job script for reference (also housed in the /opt/ohpc/

pub/examples directory. This example script can be used as a starting point for submitting batch jobs to
the resource manager and the example below illustrates use of the script to submit a batch job for execution
using the same executable referenced in the previous interactive example.

# Copy example job script

[test@sms ~]$ cp /opt/ohpc/pub/examples/slurm/job.mpi .

# Examine contents (and edit to set desired job sizing characteristics)

[test@sms ~]$ cat job.mpi

#!/bin/bash

#SBATCH -J test # Job name

#SBATCH -o job.%j.out # Name of stdout output file (%j expands to %jobId)

#SBATCH -N 2 # Total number of nodes requested

#SBATCH -n 16 # Total number of mpi tasks #requested

#SBATCH -t 01:30:00 # Run time (hh:mm:ss) - 1.5 hours

# Launch MPI-based executable

prun ./a.out

# Submit job for batch execution

[test@sms ~]$ sbatch job.mpi

Submitted batch job 339

Tip

The use of the %j option in the example batch job script shown is a convenient way to track application output
on an individual job basis. The %j token is replaced with the Slurm job allocation number once assigned
(job #339 in this example).

27 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

Appendices

A Installation Template

This appendix highlights the availability of a companion installation script that is included with OpenHPC
documentation. This script, when combined with local site inputs, can be used to implement a starting
recipe for bare-metal system installation and configuration. This template script is used during validation
efforts to test cluster installations and is provided as a convenience for administrators as a starting point for
potential site customization.

Tip

Note that the template script provided is intended for use during initial installation and is not designed for
repeated execution. If modifications are required after using the script initially, we recommend running the
relevant subset of commands interactively.

The template script relies on the use of a simple text file to define local site variables that were outlined
in §2.3. By default, the template installation script attempts to use local variable settings sourced from
the /opt/ohpc/pub/doc/recipes/vanilla/input.local file, however, this choice can be overridden by
the use of the ${OHPC INPUT LOCAL} environment variable. The template install script is intended for
execution on the SMS master host and is installed as part of the docs-ohpc package into /opt/ohpc/pub/

doc/recipes/vanilla/recipe.sh. After enabling the OpenHPC repository and reviewing the guide for
additional information on the intent of the commands, the general starting approach for using this template
is as follows:

1. Install the docs-ohpc package

[sms]# yum -y install docs-ohpc

2. Copy the provided template input file to use as a starting point to define local site settings:

[sms]# cp /opt/ohpc/pub/doc/recipes/centos7/input.local input.local

3. Update input.local with desired settings

4. Copy the template installation script which contains command-line instructions culled from this guide.

[sms]# cp -p /opt/ohpc/pub/doc/recipes/centos7/aarch64/warewulf/slurm/recipe.sh .

5. Review and edit recipe.sh to suite.

6. Use environment variable to define local input file and execute recipe.sh to perform a local installation.

[sms]# export OHPC_INPUT_LOCAL=./input.local

[sms]# ./recipe.sh

28 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

B Upgrading OpenHPC Packages

As newer OpenHPC releases are made available, users are encouraged to upgrade their locally installed
packages against the latest repository versions to obtain access to bug fixes and newer component versions.
This can be accomplished with the underlying package manager as OpenHPC packaging maintains versioning
state across releases. Also, package builds available from the OpenHPC repositories have “-ohpc” appended
to their names so that wild cards can be used as a simple way to obtain updates. The following general
procedure highlights a method for upgrading existing installations. When upgrading from a minor release
older than v1.3, you will first need to update your local OpenHPC repository configuration to point against
the v1.3 release (or update your locally hosted mirror). Refer to §4.1 for more details on enabling the latest
repository. In contrast, when upgrading between micro releases on the same branch (e.g. from v1.3 to 1.3.1),
there is no need to adjust local package manager configurations when using the public repository as rolling
updates are pre-configured.

1. (Optional) Ensure repo metadata is current (on head node and in chroot location(s)). Package man-
agers will naturally do this on their own over time, but if you are wanting to access updates immediately
after a new release, the following can be used to sync to the latest.

[sms]# yum clean expire-cache

[sms]# yum --installroot=$CHROOT clean expire-cache

2. Upgrade master (SMS) node

[sms]# yum -y upgrade "*-ohpc"

3. Upgrade packages in compute image

[sms]# yum -y --installroot=$CHROOT upgrade "*-ohpc"

4. Rebuild image(s)

[sms]# wwvnfs --chroot $CHROOT

In the case where packages were upgraded within the chroot compute image, you will need to reboot the
compute nodes when convenient to enable the changes.

B.1 New component variants

As newer variants of key compiler/MPI stacks are released, OpenHPC will periodically add toolchains
enabling the latest variant. To stay consistent throughout the build hierarchy, minimize recompilation
requirements for existing binaries, and allow for multiple variants to coexist, unique delimiters are used to
distinguish RPM package names and module hierarchy.

In the case of a fresh install, OpenHPC recipes default to installation of the latest toolchains available
in a given release branch. However, if upgrading a previously installed system, administrators can opt-in to
enable new variants as they become available. To illustrate this point, we use the OpenHPC 1.3.1 release
as an example which includes a new “gnu7” compiler variant providing GCC 7.x along with runtimes and
libraries compiled with the newer toolchain. Note that prior to the 1.3.1 release, the “gnu” variant was
available which provided GCC 5.x versions. In the case where an admin would like to enable the newer
gnu7 toolchain, installation of these additions is simplified with the use of OpenHPC’s meta-packages (see
Table 1 in Appendix E). The following example illustrates adding the complete “gnu7” toolchain environment
leveraging convenience meta-packages and also updates the modules environment to make it the default.

29 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

# Update default environment

[sms]# yum -y remove lmod-defaults-gnu-mvapich2-ohpc

[sms]# yum -y install lmod-defaults-gnu7-mvapich2-ohpc

# Install GCC 7.x-compiled meta-packages with dependencies

[sms]# yum -y install ohpc-gnu7-perf-tools \

ohpc-gnu7-serial-libs \

ohpc-gnu7-io-libs \

ohpc-gnu7-python-libs \

ohpc-gnu7-runtimes \

ohpc-gnu7-mpich-parallel-libs \

ohpc-gnu7-openmpi-parallel-libs \

ohpc-gnu7-mvapich2-parallel-libs

30 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

C Integration Test Suite

This appendix details the installation and basic use of the integration test suite used to support OpenHPC
releases. This suite is not intended to replace the validation performed by component development teams,
but is instead, devised to confirm component builds are functional and interoperable within the modular
OpenHPC environment. The test suite is generally organized by components and the OpenHPC CI workflow
relies on running the full suite using Jenkins to test multiple OS configurations and installation recipes. To
facilitate customization and running of the test suite locally, we provide these tests in a standalone RPM.

[sms]# yum -y install test-suite-ohpc

The RPM installation creates a user named ohpc-test to house the test suite and provide an isolated
environment for execution. Configuration of the test suite is done using standard GNU autotools semantics
and the BATS shell-testing framework is used to execute and log a number of individual unit tests. Some
tests require privileged execution, so a different combination of tests will be enabled depending on which user
executes the top-level configure script. Non-privileged tests requiring execution on one or more compute
nodes are submitted as jobs through the SLURM resource manager. The tests are further divided into
“short” and “long” run categories. The short run configuration is a subset of approximately 180 tests to
demonstrate basic functionality of key components (e.g. MPI stacks) and should complete in 10-20 minutes.
The long run (around 1000 tests) is comprehensive and can take an hour or more to complete.

Most components can be tested individually, but a default configuration is setup to enable collective
testing. To test an isolated component, use the configure option to disable all tests, then re-enable the
desired test to run. The --help option to configure will display all possible tests. Example output is
shown below (some output is omitted for the sake of brevity).

[sms]# su - ohpc-test

[test@sms ~]$ cd tests

[test@sms ~]$ ./configure --disable-all --enable-fftw

checking for a BSD-compatible install... /bin/install -c

checking whether build environment is sane... yes

...

---------------------------------------------- SUMMARY ---------------------------------------------

Package version............... : test-suite-1.3.0

Build user.................... : ohpc-test

Build host.................... : sms001

Configure date................ : 2017-03-24 15:41

Build architecture............ : aarch64

Compiler Families............. : gnu

MPI Families.................. : mpich mvapich2 openmpi

Resource manager ............. : SLURM

Test suite configuration...... : short

...

Libraries:

Adios .................... : disabled

Boost .................... : disabled

Boost MPI................. : disabled

FFTW...................... : enabled

GSL....................... : disabled

HDF5...................... : disabled

HYPRE..................... : disabled

...

Many OpenHPC components exist in multiple flavors to support multiple compiler and MPI runtime
permutations, and the test suite takes this in to account by iterating through these combinations by default.

31 Rev: 22344a4

https://jenkins.io
https://jenkins.io


Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

If make check is executed from the top-level test directory, all configured compiler and MPI permutations
of a library will be exercised. The following highlights the execution of the FFTW related tests that were
enabled in the previous step.

[test@sms ~]$ make check

make --no-print-directory check-TESTS

PASS: libs/fftw/ohpc-tests/test_mpi_families

============================================================================

Testsuite summary for test-suite 1.3.0

============================================================================

# TOTAL: 1

# PASS: 1

# SKIP: 0

# XFAIL: 0

# FAIL: 0

# XPASS: 0

# ERROR: 0

============================================================================

[test@sms ~]$ cat libs/fftw/tests/family-gnu-*/rm_execution.log

1..3

ok 1 [libs/FFTW] Serial C binary runs under resource manager (SLURM/gnu/mpich)

ok 2 [libs/FFTW] MPI C binary runs under resource manager (SLURM/gnu/mpich)

ok 3 [libs/FFTW] Serial Fortran binary runs under resource manager (SLURM/gnu/mpich)

PASS rm_execution (exit status: 0)

1..3

ok 1 [libs/FFTW] Serial C binary runs under resource manager (SLURM/gnu/mvapich2)

ok 2 [libs/FFTW] MPI C binary runs under resource manager (SLURM/gnu/mvapich2)

ok 3 [libs/FFTW] Serial Fortran binary runs under resource manager (SLURM/gnu/mvapich2)

PASS rm_execution (exit status: 0)

1..3

ok 1 [libs/FFTW] Serial C binary runs under resource manager (SLURM/gnu/openmpi)

ok 2 [libs/FFTW] MPI C binary runs under resource manager (SLURM/gnu/openmpi)

ok 3 [libs/FFTW] Serial Fortran binary runs under resource manager (SLURM/gnu/openmpi)

PASS rm_execution (exit status: 0)

32 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

D Customization

D.1 Adding local Lmod modules to OpenHPC hierarchy

Locally installed applications can easily be integrated in to OpenHPC systems by following the Lmod con-
vention laid out by the provided packages. Two sample module files are included in the examples-ohpc

package—one representing an application with no compiler or MPI runtime dependencies, and one depen-
dent on OpenMPI and the GNU toolchain. Simply copy these files to the prescribed locations, and the lmod

application should pick them up automatically.

[sms]# mkdir /opt/ohpc/pub/modulefiles/example1

[sms]# cp /opt/ohpc/pub/examples/example.modulefile \

/opt/ohpc/pub/modulefiles/example1/1.0

[sms]# mkdir /opt/ohpc/pub/moduledeps/gnu-openmpi/example2

[sms]# cp /opt/ohpc/pub/examples/example-mpi-dependent.modulefile \

/opt/ohpc/pub/moduledeps/gnu-openmpi/example2/1.0

[sms]# module avail

----------------------------- /opt/ohpc/pub/moduledeps/gnu-openmpi -----------------------------

adios/1.11.0 mpiP/3.4.1 phdf5/1.8.17 superlu_dist/4.2

boost/1.63.0 mumps/5.0.2 scalapack/2.0.2 tau/2.26

example2/1.0 netcdf/4.4.1.1 scalasca/2.3.1 trilinos/12.10.1

fftw/3.3.4 netcdf-cxx/4.3.0 scipy/0.19.0

hypre/2.11.1 netcdf-fortran/4.4.4 scorep/3.0

imb/4.1 petsc/3.7.5 sionlib/1.7.0

--------------------------------- /opt/ohpc/pub/moduledeps/gnu ---------------------------------

R_base/3.3.2 metis/5.1.0 numpy/1.11.1 openmpi/1.10.6 (L)

gsl/2.2.1 mpich/3.2 ocr/1.0.1 pdtoolkit/3.23

hdf5/1.8.17 mvapich2/2.2 openblas/0.2.19 superlu/5.2.1

---------------------------------- /opt/ohpc/pub/modulefiles -----------------------------------

EasyBuild/3.1.2 example1/1.0 papi/5.4.3

autotools (L) gnu/5.4.0 (L) prun/1.1 (L)

clustershell/1.7.2 ohpc (L) valgrind/3.11.0

Where:

L: Module is loaded

D: Default Module

Use "module spider" to find all possible modules.

Use "module keyword key1 key2 ..." to search for all possible modules matching

any of the "keys".

33 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

D.2 Rebuilding Packages from Source

Users of OpenHPC may find it desirable to rebuild one of the supplied packages to apply build customizations
or satisfy local requirements. One way to accomplish this is to install the appropriate source RPM, modify
the specfile as needed, and rebuild to obtain an updated binary RPM. A brief example using the FFTW
library is highlighted below. Note that the source RPMs can be downloaded from the community build
server at https://build.openhpc.community via a web browser or directly via rpm as highlighted below.
The OpenHPC build system design leverages several keywords to control the choice of compiler and MPI
families for relevant development libraries and the rpmbuild example illustrates how to override the default
mpi family.

# Install rpm-build package from base OS distro
[test@sms ~]$ sudo yum -y install rpm-build

# Install OpenHPC RPM build macros
[test@sms ~]$ sudo yum -y install ohpc-buildroot

# Download SRPM from OpenHPC repository and install locally
[test@sms ~]$ rpm -i \
http://build.openhpc.community/OpenHPC:/1.3/CentOS_7.3/src/fftw-gnu-openmpi-ohpc-3.3.6-20.3.src.rpm

# Modify spec file as desired
[test@sms ~]$ cd ~/rpmbuild/SPECS
[test@sms ~rpmbuild/SPECS]$ perl -pi -e "s/enable-static=no/enable-static=yes/" fftw.spec

# Increment RPM release so package manager will see an update
[test@sms ~rpmbuild/SPECS]$ perl -pi -e "s/Release: 20.3/Release: 20.4/" fftw.spec

# Rebuild binary RPM. Note that additional directives can be specified to modify build
[test@sms ~rpmbuild/SPECS]$ rpmbuild -bb --define "mpi_family mvapich2" fftw.spec

# Install the new package
[test@sms ~]$ sudo yum -y install ~test/rpmbuild/RPMS/x86_64/fftw-gnu-mvapich2-ohpc-3.3.6-20.4.rpm

34 Rev: 22344a4

https://build.openhpc.community


Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

E Package Manifest

This appendix provides a summary of available meta-package groupings and all of the individual RPM
packages that are available as part of this OpenHPC release. The meta-packages provide a mechanism to
group related collections of RPMs by functionality and provide a convenience mechanism for installation. A
list of the available meta-packages and a brief description is presented in Table 1.

Table 1: Available OpenHPC Meta-packages

Group Name Description

ohpc-autotools Collection of GNU autotools packages.
ohpc-base OpenHPC base packages.

ohpc-ganglia Collection of Ganglia monitoring and metrics packages.
ohpc-io-libs-gnu OpenHPC IO library builds for use with GNU compiler toolchain.

ohpc-nagios Collection of Nagios monitoring and metrics packages.
ohpc-parallel-libs-gnu-mpich OpenHPC parallel library builds for use with GNU compiler toolchain and the

MPICH runtime.
ohpc-parallel-libs-gnu-openmpi OpenHPC parallel library builds for use with GNU compiler toolchain and the

OpenMPI runtime.
ohpc-perf-tools-gnu OpenHPC performance tool builds for use with GNU compiler toolchain.

ohpc-python-libs-gnu OpenHPC python related library builds for use with GNU compiler toolchain.
ohpc-runtimes-gnu OpenHPC runtimes for use with GNU compiler toolchain.

ohpc-serial-libs-gnu OpenHPC serial library builds for use with GNU compiler toolchain.
ohpc-slurm-server OpenHPC server packages for SLURM.

ohpc-warewulf Collection of base packages for Warewulf provisioning.
ohpc-parallel-libs-gnu OpenHPC parallel library builds for use with GNU compiler toolchain.

ohpc-slurm-client OpenHPC client packages for SLURM.

35 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

What follows next in this Appendix is a series of tables that summarize the underlying RPM packages
available in this OpenHPC release. These packages are organized by groupings based on their general
functionality and each table provides information for the specific RPM name, version, brief summary, and
the web URL where additional information can be obtained for the component. Note that many of the 3rd
party community libraries that are pre-packaged with OpenHPC are built using multiple compiler and MPI
families. In these cases, the RPM package name includes delimiters identifying the development environment
for which each package build is targeted. Additional information on the OpenHPC package naming scheme
is presented in §5.6. The relevant package groupings and associated Table references are as follows:

• Administrative tools (Table 2)
• Provisioning (Table 3)
• Resource management (Table 4)
• Compiler families (Table 5)
• MPI families (Table 6)
• Development tools (Table 7)
• Performance analysis tools (Table 8)
• Distro support packages and dependencies (Table 9)
• IO Libraries (Table 10)
• Runtimes (Table 11)
• Serial Libraries (Table 12)
• Parallel Libraries (Table 13)

36 Rev: 22344a4



Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

Table 2: Administrative Tools

RPM Package Name Version Info/URL

conman-ohpc 0.2.8
ConMan: The Console Manager.
http://dun.github.io/conman

docs-ohpc 1.3.1
OpenHPC documentation.
https://github.com/openhpc/ohpc

examples-ohpc 1.4
Example source code and templates for use within OpenHPC
environment. https://github.com/openhpc/ohpc

ganglia-ohpc 3.7.2
Distributed Monitoring System.
http://ganglia.sourceforge.net

genders-ohpc 1.22
Static cluster configuration database.
https://github.com/chaos/genders

lmod-ohpc 7.4.8
Lua based Modules (lmod).
https://github.com/TACC/Lmod

mrsh-ohpc 2.12
Remote shell program that uses munge authentication.
None

nagios-plugins-ohpc 2.2.0
Host/service/network monitoring program plugins for Nagios.
https://www.nagios-plugins.org

nagios-ohpc 4.3.1
Host/service/network monitoring program.
http://www.nagios.org

ndoutils-ohpc 2.1.3
Stores all configuration and event data from Nagios in a
database. http://www.nagios.org/download/addons

nrpe-ohpc 3.1.0
Host/service/network monitoring agent for Nagios.
http://www.nagios.org

ohpc-release 1.3
OpenHPC release files.
https://github.com/openhpc/ohpc

pdsh-ohpc 2.31
Parallel remote shell program.
http://sourceforge.net/projects/pdsh

Table 3: Provisioning

RPM Package Name Version Info/URL

warewulf-common-ohpc 3.7pre
A suite of tools for clustering.
http://warewulf.lbl.gov

warewulf-ipmi-ohpc 3.7pre
IPMI Module for Warewulf.
http://warewulf.lbl.gov

warewulf-cluster-node-ohpc 3.7pre
Tools used for clustering with Warewulf.
http://warewulf.lbl.gov

warewulf-cluster-ohpc 3.7pre
Tools used for clustering with Warewulf.
http://warewulf.lbl.gov

warewulf-vnfs-ohpc 3.7pre
Warewulf VNFS Module.
http://warewulf.lbl.gov

warewulf-provision-ohpc 3.7pre
Warewulf - Provisioning Module.
http://warewulf.lbl.gov

warewulf-provision-server-ohpc 3.7pre
Warewulf - Provisioning Module - Server.
http://warewulf.lbl.gov

37 Rev: 22344a4

http://dun.github.io/conman
https://github.com/openhpc/ohpc
https://github.com/openhpc/ohpc
http://ganglia.sourceforge.net
https://github.com/chaos/genders
https://github.com/TACC/Lmod
None
https://www.nagios-plugins.org
http://www.nagios.org
http://www.nagios.org/download/addons
http://www.nagios.org
https://github.com/openhpc/ohpc
http://sourceforge.net/projects/pdsh
http://warewulf.lbl.gov
http://warewulf.lbl.gov
http://warewulf.lbl.gov
http://warewulf.lbl.gov
http://warewulf.lbl.gov
http://warewulf.lbl.gov
http://warewulf.lbl.gov


Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

Table 4: Resource Management

RPM Package Name Version Info/URL

munge-ohpc 0.5.12
MUNGE authentication service.
http://dun.github.io/munge

slurm-devel-ohpc 16.05.10
Development package for Slurm.
http://slurm.schedmd.com

slurm-pam slurm-ohpc 16.05.10
PAM module for restricting access to compute nodes via
Slurm. http://slurm.schedmd.com

slurm-perlapi-ohpc 16.05.10
Perl API to Slurm.
http://slurm.schedmd.com

slurm-sjstat-ohpc 16.05.10
Perl tool to print Slurm job state information.
http://slurm.schedmd.com

slurm-sql-ohpc 16.05.10
Slurm SQL support.
http://slurm.schedmd.com

slurm-ohpc 16.05.10
Slurm Workload Manager.
http://slurm.schedmd.com

slurm-munge-ohpc 16.05.10
Slurm authentication and crypto implementation using
Munge.
http://slurm.schedmd.com

slurm-slurmdbd-ohpc 16.05.10
Slurm database daemon.
http://slurm.schedmd.com

slurm-sjobexit-ohpc 16.05.10
Slurm job exit code management tools.
http://slurm.schedmd.com

slurm-plugins-ohpc 16.05.10
Slurm plugins (loadable shared objects).
http://slurm.schedmd.com

slurm-torque-ohpc 16.05.10
Torque/PBS wrappers for transition from Torque/PBS to
Slurm.
http://slurm.schedmd.com

slurm-slurmdb-direct-ohpc 16.05.10
Wrappers to write directly to the slurmdb.
http://slurm.schedmd.com

Table 5: Compiler Families

RPM Package Name Version Info/URL

gnu-compilers-ohpc 5.4.0
The GNU C Compiler and Support Files.
http://gcc.gnu.org

gnu7-compilers-ohpc 7.1.0
The GNU C Compiler and Support Files.
http://gcc.gnu.org

38 Rev: 22344a4

http://dun.github.io/munge
http://slurm.schedmd.com
http://slurm.schedmd.com
http://slurm.schedmd.com
http://slurm.schedmd.com
http://slurm.schedmd.com
http://slurm.schedmd.com
http://slurm.schedmd.com
http://slurm.schedmd.com
http://slurm.schedmd.com
http://slurm.schedmd.com
http://slurm.schedmd.com
http://slurm.schedmd.com
http://gcc.gnu.org
http://gcc.gnu.org


Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

Table 6: MPI Families

RPM Package Name Version Info/URL

mpich-gnu7-ohpc
3.2

MPICH MPI implementation.
http://www.mpich.orgmpich-gnu-ohpc

openmpi-gnu-ohpc 1.10.6 A powerful implementation of MPI.
http://www.open-mpi.orgopenmpi-gnu7-ohpc 1.10.7

Table 7: Development Tools

RPM Package Name Version Info/URL

automake-ohpc 1.15
A GNU tool for automatically creating Makefiles.
http://www.gnu.org/software/automake

autoconf-ohpc 2.69
A GNU tool for automatically configuring source code.
http://www.gnu.org/software/autoconf

EasyBuild-ohpc 3.2.1
Build and installation framework.
http://hpcugent.github.com/easybuild

hwloc-ohpc 1.11.6
Portable Hardware Locality.
http://www.open-mpi.org/projects/hwloc

libtool-ohpc 2.4.6
The GNU Portable Library Tool.
http://www.gnu.org/software/libtool

python-scipy-gnu7-mpich-ohpc

0.19.0
Scientific Tools for Python.
http://www.scipy.org

python-scipy-gnu7-openmpi-ohpc
python-scipy-gnu-mpich-ohpc

python-scipy-gnu-openmpi-ohpc

python-numpy-gnu-ohpc 1.11.1 NumPy array processing for numbers, strings, records and
objects. http://sourceforge.net/projects/numpypython-numpy-gnu7-ohpc 1.12.1

valgrind-ohpc 3.12.0
Valgrind Memory Debugger.
http://www.valgrind.org

39 Rev: 22344a4

http://www.mpich.org
http://www.open-mpi.org
http://www.gnu.org/software/automake
http://www.gnu.org/software/autoconf
http://hpcugent.github.com/easybuild
http://www.open-mpi.org/projects/hwloc
http://www.gnu.org/software/libtool
http://www.scipy.org
http://sourceforge.net/projects/numpy
http://www.valgrind.org


Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

Table 8: Performance Analysis Tools

RPM Package Name Version Info/URL

imb-gnu7-mpich-ohpc

4.1
Intel MPI Benchmarks (IMB).
https://software.intel.com/en-us/articles/intel-mpi-benchmarks

imb-gnu7-openmpi-ohpc
imb-gnu-mpich-ohpc

imb-gnu-openmpi-ohpc

mpiP-gnu7-mpich-ohpc

3.4.1
mpiP: a lightweight profiling library for MPI applications.
http://mpip.sourceforge.net

mpiP-gnu7-openmpi-ohpc
mpiP-gnu-mpich-ohpc

mpiP-gnu-openmpi-ohpc

papi-ohpc 5.5.1
Performance Application Programming Interface.
http://icl.cs.utk.edu/papi

pdtoolkit-gnu7-ohpc
3.23

PDT is a framework for analyzing source code.
http://www.cs.uoregon.edu/Research/pdtpdtoolkit-gnu-ohpc

scalasca-gnu7-mpich-ohpc

2.3.1
Toolset for performance analysis of large-scale parallel
applications.
http://www.scalasca.org

scalasca-gnu7-openmpi-ohpc
scalasca-gnu-mpich-ohpc

scalasca-gnu-openmpi-ohpc

scorep-gnu7-mpich-ohpc

3.0
Scalable Performance Measurement Infrastructure for Parallel
Codes.
http://www.vi-hps.org/projects/score-p

scorep-gnu7-openmpi-ohpc
scorep-gnu-mpich-ohpc

scorep-gnu-openmpi-ohpc

sionlib-gnu-mpich-ohpc
1.7.0

Scalable Performance Measurement Infrastructure for Parallel
Codes. http://www.fz-juelich.de/ias/jsc/EN/Expertise/
Support/Software/SIONlib/ node.html

sionlib-gnu-openmpi-ohpc

tau-gnu7-mpich-ohpc

2.26.1
Tuning and Analysis Utilities Profiling Package.
http://www.cs.uoregon.edu/research/tau/home.php

tau-gnu7-openmpi-ohpc
tau-gnu-mpich-ohpc

tau-gnu-openmpi-ohpc

Table 9: Distro Support Packages/Dependencies

RPM Package Name Version Info/URL

lua-bit-ohpc 1.0.2
Module for Lua which adds bitwise operations on numbers.
http://bitop.luajit.org

lua-filesystem-ohpc 1.6.3
Lua library to Access Directories and Files.
http://keplerproject.github.com/luafilesystem

lua-posix-ohpc 33.2.1
POSIX library for Lua.
https://github.com/luaposix/luaposix

40 Rev: 22344a4

https://software.intel.com/en-us/articles/intel-mpi-benchmarks
http://mpip.sourceforge.net
http://icl.cs.utk.edu/papi
http://www.cs.uoregon.edu/Research/pdt
http://www.scalasca.org
http://www.vi-hps.org/projects/score-p
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/SIONlib/_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/SIONlib/_node.html
http://www.cs.uoregon.edu/research/tau/home.php
http://bitop.luajit.org
http://keplerproject.github.com/luafilesystem
https://github.com/luaposix/luaposix


Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

Table 10: IO Libraries

RPM Package Name Version Info/URL

adios-gnu7-mpich-ohpc

1.11.0
The Adaptable IO System (ADIOS).
http://www.olcf.ornl.gov/center-projects/adios

adios-gnu7-openmpi-ohpc
adios-gnu-mpich-ohpc

adios-gnu-openmpi-ohpc

hdf5-gnu-ohpc 1.8.17 A general purpose library and file format for storing scientific
data. http://www.hdfgroup.org/HDF5hdf5-gnu7-ohpc 1.10.0

netcdf-cxx-gnu7-mpich-ohpc

4.3.0
C++ Libraries for the Unidata network Common Data Form.
http://www.unidata.ucar.edu/software/netcdf

netcdf-cxx-gnu7-openmpi-ohpc
netcdf-cxx-gnu-mpich-ohpc

netcdf-cxx-gnu-openmpi-ohpc

netcdf-gnu7-mpich-ohpc

4.4.1.1

C Libraries for the Unidata network Common Data Form.
http://www.unidata.ucar.edu/software/netcdf

netcdf-gnu7-openmpi-ohpc
netcdf-gnu-mpich-ohpc

netcdf-gnu-openmpi-ohpc
netcdf-fortran-gnu7-mpich-ohpc

4.4.4
netcdf-fortran-gnu7-openmpi-ohpc

netcdf-fortran-gnu-mpich-ohpc
netcdf-fortran-gnu-openmpi-ohpc

phdf5-gnu-mpich-ohpc
1.8.17 A general purpose library and file format for storing scientific

data.
http://www.hdfgroup.org/HDF5

phdf5-gnu-openmpi-ohpc
phdf5-gnu7-mpich-ohpc

1.10.0
phdf5-gnu7-openmpi-ohpc

sionlib-gnu7-mpich-ohpc
1.7.1

Scalable I/O Library for Parallel Access to Task-Local Files.
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/
Software/SIONlib/ node.html

sionlib-gnu7-openmpi-ohpc

41 Rev: 22344a4

http://www.olcf.ornl.gov/center-projects/adios
http://www.hdfgroup.org/HDF5
http://www.unidata.ucar.edu/software/netcdf
http://www.unidata.ucar.edu/software/netcdf
http://www.hdfgroup.org/HDF5
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/SIONlib/_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/SIONlib/_node.html


Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

Table 11: Runtimes

RPM Package Name Version Info/URL

ocr-gnu7-ohpc
1.0.1

Open Community Runtime (OCR) for shared memory.
https://xstack.exascale-tech.com/wikiocr-gnu-ohpc

singularity-ohpc 2.3
Application and environment virtualization.
http://singularity.lbl.gov

Table 12: Serial Libraries

RPM Package Name Version Info/URL

gsl-gnu-ohpc 2.2.1 GNU Scientific Library (GSL).
http://www.gnu.org/software/gslgsl-gnu7-ohpc 2.3

metis-gnu7-ohpc
5.1.0

Serial Graph Partitioning and Fill-reducing Matrix Ordering.
http://glaros.dtc.umn.edu/gkhome/metis/metis/overviewmetis-gnu-ohpc

openblas-gnu7-ohpc
0.2.19

An optimized BLAS library based on GotoBLAS2.
http://www.openblas.netopenblas-gnu-ohpc

R-gnu7-ohpc 3.3.3
R is a language and environment for statistical computing and
graphics (S-Plus like). http://www.r-project.org

superlu-gnu7-ohpc
5.2.1

A general purpose library for the direct solution of linear
equations. http://crd.lbl.gov/∼xiaoye/SuperLUsuperlu-gnu-ohpc

42 Rev: 22344a4

https://xstack.exascale-tech.com/wiki
http://singularity.lbl.gov
http://www.gnu.org/software/gsl
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://www.openblas.net
http://www.r-project.org
http://crd.lbl.gov/~xiaoye/SuperLU


Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

Table 13: Parallel Libraries

RPM Package Name Version Info/URL

boost-gnu7-mpich-ohpc

1.63.0
Boost free peer-reviewed portable C++ source libraries.
http://www.boost.org

boost-gnu7-openmpi-ohpc
boost-gnu-mpich-ohpc

boost-gnu-openmpi-ohpc

fftw-gnu-mpich-ohpc
3.3.4

A Fast Fourier Transform library.
http://www.fftw.org

fftw-gnu-openmpi-ohpc
fftw-gnu7-mpich-ohpc

3.3.6
fftw-gnu7-openmpi-ohpc

hypre-gnu7-mpich-ohpc

2.11.1
Scalable algorithms for solving linear systems of equations.
http://www.llnl.gov/casc/hypre

hypre-gnu7-openmpi-ohpc
hypre-gnu-mpich-ohpc

hypre-gnu-openmpi-ohpc

mumps-gnu-mpich-ohpc
5.0.2

A MUltifrontal Massively Parallel Sparse direct Solver.
http://mumps.enseeiht.fr

mumps-gnu-openmpi-ohpc
mumps-gnu7-mpich-ohpc

5.1.1
mumps-gnu7-openmpi-ohpc

petsc-gnu-mpich-ohpc
3.7.5

Portable Extensible Toolkit for Scientific Computation.
http://www.mcs.anl.gov/petsc

petsc-gnu-openmpi-ohpc
petsc-gnu7-mpich-ohpc

3.7.6
petsc-gnu7-openmpi-ohpc

superlu dist-gnu7-mpich-ohpc

4.2
A general purpose library for the direct solution of linear
equations.
http://crd-legacy.lbl.gov/∼xiaoye/SuperLU

superlu dist-gnu7-openmpi-ohpc
superlu dist-gnu-mpich-ohpc

superlu dist-gnu-openmpi-ohpc

trilinos-gnu7-mpich-ohpc

12.10.1
A collection of libraries of numerical algorithms.
http://trilinos.sandia.gov/index.html

trilinos-gnu7-openmpi-ohpc
trilinos-gnu-mpich-ohpc

trilinos-gnu-openmpi-ohpc

43 Rev: 22344a4

http://www.boost.org
http://www.fftw.org
http://www.llnl.gov/casc/hypre
http://mumps.enseeiht.fr
http://www.mcs.anl.gov/petsc
http://crd-legacy.lbl.gov/~xiaoye/SuperLU
http://trilinos.sandia.gov/index.html


Install Guide (v1.3.1): CentOS7.3/aarch64 + Warewulf + SLURM

F Package Signatures

All of the RPMs provided via the OpenHPC repository are signed with a GPG signature. By default, the
underlying package managers will verify these signatures during installation to ensure that packages have
not been altered. The RPMs can also be manually verified and the public signing key fingerprint for the
latest repository is shown below:

Fingerprint: DD5D 8CAA CB57 364F FCC2 D3AE C468 07FF 26CE 6884

The following command can be used to verify an RPM once it has been downloaded locally by confirming
if the package is signed, and if so, indicating which key was used to sign it. The example below highlights
usage for a local copy of the docs-ohpc package and illustrates how the key ID matches the fingerprint
shown above.

[sms]# rpm --checksig -v docs-ohpc-*.rpm

docs-ohpc-1.0-1.1.x86_64.rpm:

Header V3 RSA/SHA256 Signature, key ID 26ce6884: OK

Header SHA1 digest: OK (c3873bf495c51d2ea6d3ef23ab88be105983c72c)

V3 RSA/SHA256 Signature, key ID 26ce6884: OK

MD5 digest: OK (43d067f33fb370e30a39789439ead238)

44 Rev: 22344a4


	Tech Preview
	Introduction
	Target Audience
	Requirements/Assumptions
	Inputs

	Install Base Operating System (BOS)
	Install OpenHPC Components
	Enable OpenHPC repository for local use
	Installation template
	Add provisioning services on master node
	Add resource management services on master node
	Add InfiniBand support services on master node
	Complete basic Warewulf setup for master node
	Define compute image for provisioning
	Build initial BOS image
	Add OpenHPC components
	Customize system configuration
	Additional Customization (optional)
	Increase locked memory limits
	Enable ssh control via resource manager
	Add Lustre client
	Add Nagios monitoring
	Add Ganglia monitoring
	Add ClusterShell
	Add mrsh
	Add genders
	Add ConMan
	Enable forwarding of system logs

	Import files

	Finalizing provisioning configuration
	Assemble bootstrap image
	Assemble Virtual Node File System (VNFS) image
	Register nodes for provisioning
	Optional kernel arguments
	Optionally configure stateful provisioning

	Boot compute nodes

	Install OpenHPC Development Components
	Development Tools
	Compilers
	MPI Stacks
	Performance Tools
	Setup default development environment
	3rd Party Libraries and Tools

	Resource Manager Startup
	Run a Test Job
	Interactive execution
	Batch execution

	Appendices
	Installation Template
	Upgrading OpenHPC Packages
	New component variants

	Integration Test Suite
	Customization
	Adding local Lmod modules to OpenHPC hierarchy
	Rebuilding Packages from Source

	Package Manifest
	Package Signatures


